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Fig. 1. Workflow of SyncNet when assessing audio-visual synchrony and its relation to human perception of dubbing.

We present a comprehensive analysis of the neural audio-visual synchrony evaluation tool SyncNet. We assess the agreement of
SyncNet scores vis-a-vis human perception and whether we can use these as a reliable metric for evaluating audio-visual lip-synchrony
in generation tasks with no ground truth reference audio-video pair. We further look into the underlying elements in audio and video
which vitally affect synchrony using interpretable explanations from SyncNet predictions and analyse its susceptibility by introducing
adversarial noise. SyncNet has been used in numerous papers on visually-grounded text-to-speech for scenarios such as dubbing. We

focus on this scenario which features many local asynchronies (something that SyncNet isn’t made for).
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1 INTRODUCTION

Audio-visual synchrony (AV-sync), especially for visibly speaking faces has long been of interest in the signal processing
community. Operations such as mixing, transmission, reception and processing of signals lead to unequal delays for
each modality, which, if left uncorrected, may cause an unpleasant viewing experience. Television companies tackle
this by embedding time stamps and tags in the audio and video streams facilitated by standardised frameworks [6].

Recently, multiple papers have proposed deep learning to rectify AV-sync errors using only the underlying audio-visual
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data [12, 19, 21, 36]. The first such model was SyncNet [12] which was proposed to correct time shifts between audio
and video. Recent research has successfully used SyncNet for tasks that require to assess jitter (local discrepancies
between audio and video), rather than time shift, like lip generation [31, 37, 42], visually-grounded speech synthesis
[17, 18, 23], lip-reading [12, 39] and speaker diarization [2, 14], both as an AV-sync metric and for generating meaningful
representations. SyncNet’s popularity can partially be attributed to the open-sourced code repository! and model weights
provided by the authors. In this paper, we look into SyncNet’s effectiveness as an AV-sync metric for dubbing-related
applications which also features a high amount of AV jitter.

Automated dubbing consists of automated translation of the source language [33], synchronous re-speaking in
the target language and potentially adaptations to lip-movement visible on screen. Processes like speaker-video
grounded speech synthesis or modifying the lip movements in the video according to the generated audio can help
improve synchrony and boost dubbing quality and naturalness. A key aspect of automated dubbing tasks is that perfect
synchronization is virtually impossible, although it is broadly characterized and evaluated using AV-sync. In these tasks,
for the scores to be reliable, they must align as best as possible with human perception. While SyncNet has already
been (successfully) used as a substitute for human evaluations [17, 18, 23], there have been no scientific studies yet
regarding its agreement with human evaluations. So, in this paper, we attack the question of how reliably SyncNet
mimics human judgements of audio-visual synchrony and can hence be expected to be useful as a target function in
model training or as a substitute to human evaluations. Specifically, our contribution is threefold:

o We evaluate the SyncNet’s agreement with human evaluations across a wide range of varying input properties
like language, recording conditions and noise, and try to identify any underlying biases that may be due to a
data distribution shift.

e We analyze the interpretability of the SyncNet model and identify the components in the audio-visual input
data that are affecting the predicted AV-sync error. We relate these findings to expert heuristics when manually
preparing and performing dubbed speech and find interesting similarities and differences that will be useful to
further refine future models.

e We assess SyncNet performance on dubbed material and draw conclusions on its applicability in this domain.

2 AUDIO-VISUAL TRANSLATION: “DUBBING”

Dubbing, or audio-visual translation, is the process of replacing the audio track in a video clip with another, containing
the dialogue translated into a different language. In many countries such as India, Spain, Italy and Germany, dubbed
content is the preferred mode of foreign AV media consumption (as compared to others where subtitling is more
prevalent, such as in Scandinavia). The key objective for dubbing is to create the illusion that the dubbed audio is
spoken first-hand by the speaker on-screen. Maximising the AV-sync between the speech embedded in the audio and
the video track can help ensure this.

The task of translation in itself provides potential for controversy [7] and one linguistic definition can be: “translation
is a type of language mediation, socially serving to approximate a mediated bilingual communication to a common
monolingual communication”. [38, p.4] The process of translation is thus a complex cognitive process that consists of
decoding the meaning of a source language text and re-encoding this meaning into a target language text, and requiring
knowledge of not only the grammar, semantics, syntax, etc., but also of the culture corresponding to the respective

communities that use both these languages. [3]
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Dataset LRW [11] LRS2[10] LRS3[1] GRID [13] VoxCeleb2 [9] Lip2Wav [32] Merkel [34] Heroes [27]

LSE-D 7.01 6.74 6.96 6.87 7.51 6.93 7.81 8.60
LSE-C 6.93 7.84 7.59 7.68 7.00 7.71 6.29 3.60

Table 1. Mean LSE-D and LSE-C scores for several audio-visual datasets. Scores aggregated from [17, 18, 30, 34]. The language in all
datasets is English, except for Merkel which is German.

With the addition of “audio-visual”, the goal of translation extends to multi-modal alignment, requiring the source
and target speech to align in terms of lip movements (and to a lesser degree to accentuations, facial mimicry and
gesturing of the actor). The intended multi-modal perception of a film consists of “watching” and “listening” and
these are inseparably intertwined and performed simultaneously. McGurk [24] found understanding difficulties based
on active perception given conflicting auditory and visual cues. Similarly, Buchan et al. found that participants in
an eye-tracking study paid more (visual) attention to lips under noisy conditions [5], making high lip-synchrony of
dubbing key for understandability in noisy speech. Many experiments have found the overall quality perception of AV
material to depend on each modality’s quality as well as their matching [29] implying that the quality of dubbing will
be ascribed as the quality of a given film.

Dubbing has been studied particularly in the arts and humanities and the manual dubbing process is largely driven
by heuristics about what constitutes ‘good’ dubbing: quantitative similarity is concerned with the coordination of
time of speech and lip movements and is meant to avoid visual or auditory phantom effects. Qualitative similarity
is important once quantity is established, and is concerned with matching visemic characteristics (i.e., what speech
sounds look like when pronounced) of source and target speech, such as opening angle of the jaw for vowels and lip
closure for consonants. In this regard, there shall be a special focus on open vowels (such as /a:/ and particularly in

stressed syllables), bilabial consonants (/p b m/) and labio-dental consonants /t d n/). [8]

3 AN EMPIRICAL BACKGROUND ON SYNCNET

SyncNet [12] is a multimodal model that predicts metrics indicating the synchrony of the input audio-video pair. Video
is input to the SyncNet in the form of face crops and audio is passed to the model in the form of MFCC features [25].
Windows of 0.2 s are used to extract segments of video and audio inputs which are subsequently passed through separate
video and audio encoders (comprised of convolutional layers) to generate video and audio embeddings respectively. The
model is trained to minimize (maximise) the L2-distance between these set of embeddings for the sync’ed (unsync’ed)
pairs using a max-margin loss and negative sampling. The model has been used for synchrony evaluation based on
the two metrics LSE-C (Confidence) and LSE-D (Distance) [30]. For calculating the LSE-D metric, the video input is
shifted (wrt. audio) by a range of offset values. For each shift value, the windowed L2-distance between the audio and
video features, averaged over the entire duration of the snippet was used to quantify the synchrony score for that offset.
The resulting LSE-D was taken as the minimum of these synchrony scores. A lower LSE-D implies better audio-visual
synchronization. A higher LSE-C value denotes that the minimum distance offset obtained has a much lower LSE-D
compared to adjacent offsets and therefore the model has higher confidence in it being the correct offset.

Table 1 shows LSE-D and LSE-C scores aggregated for various datasets. We observe that SyncNet scores vary across
datasets. Particularly, VoxCeleb2 and Heroes dataset show a larger deviation from other English datasets. Further, scores
for Merkel dataset (in German) are worse, calling their language independence [12] into question. While one has to be
careful while comparing SyncNet scores from data coming from different sources, we find that they are reasonably

consistent across varying conditions.
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Audio = Visual

Fig. 2. Left: De-synchronisation process wrt. the target phoneme /p/ in "tempo" in the video condition: frames are skipped be-
fore/duplicated after the target, yielding a de-synchronised impression of the lip closure to the plosive. Similar de-synchronisation is
performed by shortening/lengthening surrounding speech for the audio condition, both in opposing directions are combined for
mixed and in the same direction for the multi condition. Right: Comparison of synchony judgements by humans (gray bars, higher is
better) and SyncNet LSE-D (red line) grouped by the four applied types of modifications and over strength of introduced asynchrony.

We do a quantitative analysis of SyncNet performance with different varying input attributes, using a subset of
the LRS3 and Merkel datasets. On videos of different durations (1-30 seconds) we observe that scores are invariant to
duration on average, but shorter videos show a larger variance in scores. We also analyze wrt. speaker-face direction
(roll, pitch and yaw) and find scores to be largely independent as well. Finally, we analyze the inter-dependencies
between the SyncNet metrics LSE-C and LSE-D, and observe a Pearson correlation coefficient of -0.74 (on LRS3, -0.78

on Merkel) indicating a strong negative correlation.

4 SYNCNET SCORES RELATIVE TO HUMAN JUDGEMENTS

As outlined above, the perceptual gravity of asynchronies is thought to depend on what speech sounds and corresponding
visemes are desynchronized and whether asynchronies stem from the auditive or visual channels. We perform a study
with human participants who rate stimuli that have been manipulated in order to yield asynchronies, assess the gravitiy
of asynchronies in different types of stimuli, and check how well SyncNet matches human preferences.

Among the wide range of corpora for audio-visual speech, we select the Merkel Corpus [34] as the base of our study
which features web-streamed podcasts of former German chancellor Angela Merkel as the main speaker. It provides
clear views of the speaker’s face and lips at only moderate angles of the face and often as a close-up shot with little
movement wrt. the camera or scene. Recordings are of studio quality with high frame rate, resolution and audio quality.
The corpus comes with time-aligned transcripts which were further extended with phoneme-level timings from forced
alignment [35] for this study. We hand-selected samples from the corpus which can be characterized as American
Medium and Medium-Long Shots [4], an example of which can be seen in Figure 3. Each sample contains a target
phoneme combination under consideration for manipulation (/p/ as a bilabial plosive and /a/ as an open vowel as well
as inter-word pauses) particularly clearly and with varied surrounding speech material.

From each source sample, we derive variations in which the audio or video track (or both, termed the mixed condition)
are locally de-synchronized around the target phoneme by shortening/lengthening the material before the target (and

doing the opposite afterwards). Audio duration manipulation is performed using sox? while video manipulation is

250X is a cross-platform command line utility for performing audio manipulations (http://sox.sourceforge.net/sox.html).
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Fig. 3. Gradients obtained from Integrated-Gradients overlaid on the video (Reddish tones signify larger gradients)

performed by skipping and interpolating frames. All processing uses a granularity of 40 ms (based on the frame rate
of 25 fps) and asynchronies of 1-6 frames are introduced (2-8 frames for the mixed case which combines audio and
video asynchronies in opposite directions). Furthermore, we also introduce synchronous manipulations by shifting
both audio and video in the same direction (termed the multi condition). Asynchronies are strongest at the location of
the specified phoneme, weaker in the close proximity to it and non-existent in the rest of the video sequence. The multi
condition does not introduce asynchronies but only the artifacts stemming from AV manipulation.

We gathered human ratings of synchrony with a MUSHRA test design [40] using a web-based experiment platform
[22]. 83 participants provided 9234 observations out of which 70 (6930) passed our quality control (26 female, 39 male, 5
no info) As part of this quality control, we removed observations from tests that where performed in an unreasonably
short time and also duplicates, created by participants restarting the session.

As the data indicates and the direct comparison shows (Figure 2), the general tendency of humans while assessing
lip-synchrony in video material, corresponds to the LSE-D scores. Notable here is the stark contrast in regard of
synchrony impairments introduced by editing the audio part of the video. While humans and SyncNet both tend to give
a lower rating for stronger modified videos, SyncNet drastically penalizes even small impairments compared to humans,
who show a higher tolerance in this case. This pronounced sensitivity reveals a level of detail that is not observed in

human viewers and might lead to undesired consequences when using SyncNet LSE-D as a target function.

5 SYNCNET FOCUS IN SPACE AND TIME

In Section 4, we evaluated SyncNet’s alignment with human evaluations. Detecting asynchronies is an inherent quality
of human beings who develop varying sensitivities based on the type of audio-visual content they are exposed to
over their lifetime. While an agreement empirically shows good performance for SyncNet, in this section, we attempt
to understand the aspects of audio and video responsible for affecting the synchrony scores using neural network
explainability and adversarial techniques [15, 41]. We believe that, in addition to understanding the inner working
of SyncNet, this analysis helps to further our understanding of human synchrony perception. For convenience and
comparability, we perform the following experiments on the Merkel Corpus [34] as well. However, based on the
arguments provided in Section 3, we believe our findings likely generalise to other datasets.

Model Explainability. As a naive approach, similar to the Fast Gradient Sign Method (FGSM) attack [16], we obtain
the gradients at the inputs by backpropagating the final predicted distance through each layer of the network down to
the input features, i.e., each individual video pixel and audio sample. We also examine the gradients obtained on the
video features using Integrated Gradients [26], a more reliable and powerful explainability technique which works
by approximating the integral over the gradient, per feature. We demonstrate the image gradients overlaid onto the
original video frames in Figure 3. The figure shows that SyncNet focuses near the mouth region of the speaker videos
to capture the lip movements essential for determining synchrony (and this also becomes apparent from aggregations
of many frames). This leads us to the conclusion that SyncNet is correctly focusing on the relevant parts of the image

when determining synchrony.
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Fig. 4. Phoneme importance for SyncNet scores (phonemes coded in SAMPA, rare ones shown in orange).

In addition to the spatial locality of SyncNet gradients in the video, we analyze when in the audio SyncNet’s synchrony
decisions are predominantly determined. Using the audio gradients, we identify almost continuous intervals of high
gradient values and relate these to the phonemes spoken at that point in time (based on MAUS alignments [35]). Based
on the human heuristic that some phoneme types are more relevant for dubbing synchrony, we define the relevance
of each phoneme type as the duration of its overlap with high gradient regions relative to the total duration of this
phoneme in the entire corpus. We show the phoneme importance for each phoneme in Figure 4.

We find that SyncNet by-and-large follows the human heuristic: it pays very close attention to silences (between
words and sentences) which leads us to conclude that it aims to check for “phantom movements” when no speech
is present. Furthermore, bilabial and labio-dental phonemes (particularly plosives) are of highest importance among
the speech sounds, which matches human intuition that lip closures are of particular importance when assessing
lip synchrony. It is very interesting to note that the heuristic of matching jaw movements (by matching the degree
of openness of vowels) is disregarded by the learnt model and this likely matches the relative unimportance of this
heuristic as compared to matching quantity (by observing silences) and matching lip closures.

Adversarial Attacks. For FGSM attacks, the mode of application is taking one gradient update along the direction of
the sign of gradient at each pixel. On performing FGSM attacks on SyncNet, we find that with a pixel perturbation
magnitude of 3 for video input, we obtain an average increase of 1.5 in the LSE-D (i.e., the difference between well’
and ’badly’ judged synchrony in the perceptual evaluation) with no perceptible change in video quality. This proves
that SyncNet is sensitive to noise-induced adversarial attacks, which must be kept in mind while leveraging SyncNet
predictions for learning deep models for AV tasks. Furthermore, running FGSM attacks with the opposite objective of
improving SyncNet scores was found to be a much harder task. Very insignificant decreases in LSE-D were observed,
that too just with sub-pixel level perturbations. With large gradient update steps (>1), an increase in LSE-D was observed
instead. A possible explanation for this is that ground-truth audio-video pairs lie near, if not exactly in the global

minimum of LSE-D scores. So it is expected that large gradient updates can cause overshooting of the minima value.

6 SYNCNET ON DUBBED DATA

We here analyze SyncNet’s effectiveness as an AV-sync metric for dubbing data. We use the Heroes television series
as transcribed and made available [27, 28] and further labeled with each of the English utterances as being spoken
on-screen, where the actor’s face is visible on screen while speaking the utterance, and off-screen where it is not [20].
The original corpus does not contain video, so we use a DVD release with English and German dubbed video. For each
of the utterances labeled on/off-screen, we get the corresponding video snippet in English and German, and analyze
LSE-D and LSE-C scores on original as well as dubbed videos. We crop on-screen videos to the faces visible and resize
to a 224x224 size. For off-screen, we directly resize to 224x224. We then run the SyncNet model and obtain LSE-D and

LSE-C scores for each of these videos.
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Table 2. SyncNet scores for on/off screen, English/German. Fig. 5. Density plot for LSE-D and LSE-C scores for on-screen

original English and dubbed German videos.

On-screen Analysis. Table 2 shows that for on-screen, English videos have a lower LSE-D and higher LSE-C scores
compared to German dubbing. Dubbed audio does not follow lip movements accurately and SyncNet notices this.
However, scores for English in Heroes are worse than all other datasets (Table 1) indicating an impact of the large
variety of pose, lighting, perspective and possibly encoding artifacts. Further, the density plots in Fig. 5 show quite a
clear demarcation between English original and German dubbing. We manually analyzed videos where LSE-D is lower
for German dubbing as compared to English original, i.e., the videos that lie in the overlap of the two density plots. We
observe that these are very short on average (1.17 s; 0 =0.73, median 1s) and as described in Section 3, scores show
high variance for very short videos. This may indicate that these scores are not systematically better.

Off-Screen Analysis. Table 2 shows that the SyncNet scores for both English and German dubbed off-screen videos are
almost equal. This is expected since in these videos there typically is no face whose lips are moving. It is remarkable,
however, that scores for on-screen dubbed German are worse than for off-screen. This leads us to believe that SyncNet
penalizes more when lip motions are incorrect than for no lip motion at all (or no lips, for that matter), and this despite
the fact that SyncNet was shown to pay close attention to “phantom speech” in Section 5.

It will therefore be crucial to combine SyncNet scoring with on/off-screen analysis when assessing dubbing quality.

7 CONCLUSION

We have analyzed to what extent SyncNet is applicable to dubbing automation. Dubbing poses unique challenges such
as the target never being perfectly alignable given that the target language’s phonetic realization differs from the source.
We found that SyncNet scores by-and-large match human judgements but also that humans are more forgiving towards
small audio shifts. We have also found that SyncNet bases decisions on similar criteria as are found to be important in
dubbing (pauses to avoid “phantom speech” and plosives to match lip closure). At the same time, we find evidence that
opening angle of the jaw is less relevant than was previously hypothesized in the literature on dubbing.

However, dubbed speech is rated as badly as completely asynchronous speech in the Heroes corpus. This can be seen
as an indication that SyncNet is still lacking with regards to differentiating “reasonably” dubbed speech from badly or
not at all dubbed speech which may hinder its applicability in assessing (and improving) dubbing applications.

We believe that future improvements to AV-sync assessment for dubbing can be made if it inludes dubbing and,
foremost, if human judgements are better taken into account (e.g. by including high-quality dubbed TV in the target
language in the training data).

There do exist some alternatives to SyncNet that show slightly better results on audiovisual time offset detection
tasks [12, 19, 21, 36]. However, as these are not specifically trained for the dubbing task, our results are likely to carry

over to these methods as well.
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